Abstract **#B164**

A platform of metastatic bioluminescent PDX: Focus on HBCx14-Luc1 metastatic bioluminescent breast tumorgraft model for preclinical studies

Ludovic Bourré, Mylène Bernes, Enora Leven, Vanessa Yvonnet, Olivier Déas, Myriam Lassalle and Jean-Gabriel Judde. XenTech, 4 rue Pierre Fontaine – 91000 Evry-France.

INTRODUCTION AND RATIONALE

• All in vivo studies were conducted in conformity with National Veterinarian Regulations as defined by the French • The ability of tumor cells to spread and form metastases is one of the key parameters used to classify tumor • At present, 5 PDXs shown to be metastatic by ex vivo 5-Ala assay have been transduced to express luciferase. and • • Bioluminescent metastatic PDX models derived from tumors of different histotype were successfully established by aggressiveness. Metastasis detection at diagnosis or during follow-up post-surgery is associated with poor prognosis. analyzed as listed in Table 2. For all models, metastasis detection assay has been performed on mice grafted with growing luciferase-engineered PDXs subcutaneously into appropriate immunodeficient mouse strains. Additional PDX Ministry. PDX collection screening for identification of metastatic models was performed by *ex vivo* fluorescence. For imaging, The paucity of pertinent models to investigate the biology of metastasis renders problematic the set-up of antibioluminescent tumor specimens, and not by cell injection, in order to be sure that metastasis development is the models have been transduced and are currently being screened in vivo and ex-vivo in order to get model-specific metastasis therapies. We took advantage of our human patient-derived xenograft (PDX) collection to develop models result of tumor cell migration from the primary tumor. All PDXs developed bioluminescent metastasis with modelprotoporphyrin IX precursor 5-Ala (250 mg/kg) was injected intravenously, and 4h later tumors and organs (lungs, patterns of metastatic spreading. dependent delay of occurrence. By in vivo imaging, we could only detect lung metastasis. By contrast, ex vivo e So far, only lung metastasis could be detected in vivo. This is probably due to the weakness of the signal from kidneys, spleen and brain) were harvested and checked for accumulated protoporphyrin IX fluorescence. Positive suitable to assess anti-metastatic therapy. regions underwent histological analysis to confirm the presence of metastasis. bioluminescence assay showed that, in addition to lungs, several other organs were also colonized by the tumor in a metastasis. As metastasis development is a long term process, the most important limitation to the analysis of ♥ Tumor cells from freshly excised PDXs were dissociated using GentleMACS™Dissociator (Miltenyi Biotec) and model-dependent way. Particularly, a Her2-positive breast PDX model, HBCx-5-Luc2, induced bioluminescent metastasis occurrence is the rapidity of primary tumor growth, which frequently reaches the volume indicated for porphyrin precursor that is preferentially metabolized into porphyrin by tumor cells (1), The use of this technique enzymatic cocktail (Collagenase, Hyaluronidase and DNase) (Sigma). To remove dead cells and debris, cells were allowed the observation that metastases developed in a variety of PDX models from different organ of origin (breast, metastases at pancreas, brain, spleen, liver, lung and bones (Figure 2), whereas metastatic spread in triple-negative ethical sacrifice in few weeks. washed three time, then counted and cell viability was assessed with trypan blue (Invitrogen). breast cancer model HBCx-12B seem to be rather specific at brain and liver. • The observation that primary tumor resection delays but does not prevent metastasis formation allows to keep

• We decided to evaluate the impact of primary tumor surgical removal on metastasis formation. To this aim, we mice under observation for a longer time. This approach will put the assay closer to the clinical situation, and will Cells were transduced with lentiviral vector particles containing firefly luciferase gene (Vectalys). One million chose the triple-negative breast cancer model HBCx-14-Luc1, one of our bioluminescent models best characterized in hopefully allow pushing metastasis growth to a size that can be detected in vivo, thus rendering possible live transduced cells were injected subcutaneously into immunocompromised nude (Athymic Nude-Foxn1^{nu}) or SCID (severe combined immunodefeciency : CB17/IcrHsd-Prkdcscid) mice. Tumor growth and metastasis formation were terms of profile of metastasis occurrence and stabilization of bioluminescence intensity in tumor cells. To investigate observation in various organs of metastasis response to anti-metastatic agents. the influence of primary tumor resection, we monitored both lung metastasis frequency and delay of occurrence in • These models will provide a useful tool to explore the biology of metastasis and evaluate anti-metastatic therapies monitored throughout passages by whole body visualization and ex vivo organ imaging at the end point using the Xenogen IVIS® Lumina. Before *in vivo* imaging, mice were injected with Luciferin solution at 150 mg/kg. resected and unresected mice. As shown in Table 3, no difference was observed between resected (7/8 positive at in a selection of organs. Our goal is to extend as much as possible the number of bioluminescent metastatic PDX • To study the influence of the primary tumor on metastatic spread and to prolong the follow-up for metastasis models available for research, in order to reproduce the heterogeneity of metastatic tumor behavior that is observed D88) and non-resected mice (11/13 at D93) when looking at metastasis positive mice at end point. However, while detection primary tumor resection was performed when tumor size reached 500 mm³. the first day of metastasis occurrence was similar between non-resected (D48) and resected mice (D53), the number in patients. *In vivo* bioluminescence was measured every two weeks, over 8 to 20 weeks, to assess metastasis appearance and of metastasis positive mice at this early time-point was higher for the non-resected (7/8) compared to resected mice progression. The presence of metastases was confirmed by histological analysis. **REFERENCES**: (1) Murayama Y, et al. Precise detection of lymph node metastases in mouse rectal cancer by using (3/18). The graphs in Figure 3 show the impact of primary tumor resection on tumor growth and metastasis 5-aminolevulinic acid. Int J Cancer. 2009 Nov 15;125(10):2256-63. *Ex vivo* bioluminescence of tumor and organs was checked using a 150 µg/ml luciferin bath. development

liver, prostate, pancreas and skin) (Figure 1 and Table 1). • For all models that showed a metastatic phenotype, SCID mice proved more permissive to metastasis development than nude mice. Therefore, as PDX growth on nude mice minimizes the risk of contaminating human tumors with murine lymphoma, we decided to keep PDX passages on nude mice and graft tumors on SCID only to perform metastasis induction experiments. • To enable evaluation of metastasis response to treatment, we labeled tumors with lentivirus-mediated luciferase insertion, allowing longitudinal follow-up of metastasis formation by non-invasive imaging. A review of our metastatic bioluminescent PDX panel is described here with a particular focus on the heterogeneity of the metastatic spread in different PDXs, and on the impact of primary tumor resection in a well-characterized bioluminescent triple-negative breast cancer model, HBCx-14-Luc1.

Figure 1 Metastasis detection visualised by fluorescence induced by 5-Ala metabolization

AACR-NCI-EORT 2013, Boston, MA

RESULTS

FIGURES AND TABLES

www.xentech.eu

					Luciferase-positive met					astasis at endpoint			
	E Ala positivo		PDX Model	Primary tumor resection	N of mice		ex-vivo						
	PDXs					mean latence (days)	Lung	Lung	Liver	Spleen	Pancreas	Brain	Bones
	HBCx-5 HBCx-6	Table 2List of bioluminescentPDXs analyzed formetastatic spreading					0	5		•			
	HBCx-7		HBCx-12B-Luc3	No	10	50+/-12	10/10	4/4	1/4	0/4	0/4	2/4	0/4
	HBCx-9		HBCx-5-Luc2	No	17	83+/-40	16/17	17/17	6/12	1/13	8/13	11/13	10/13
	HBCx-12B		HBCx-14-Luc1	Yes	16	75+/-8	8/16	10/16	NA	NA	NA	NA	NA
	HBCx-14		PAC120-Luc	No	6	65	1/5	4/5	NA	NA	NA	NA	NA
	HBCx-19 HBCx-23		PANx-005-Luc1	No	11	42	6/11	11/11	0/11	1/11	0/11	0/11	1/11
	HBCx-28												
	HBCx-30	Figure 2 Imaging of HBCx-5- Luc2 metastases detected in vivo and ex-vivo	In vivo		Ex-vivo								
	HBCx-34 HBCx-39 T330		Lung		Tu	Imor	nge >= -1.74e2 ×= 2.51e4	Lun	g	Image Min = -3.63e3 Max = 9.74e5	Liv	er	Image Min = -2.89e3 Max = 2.99e5
	HB-234-PAL HB-244-MAN-RED-239						- 16000 - 14000 Herc/cm^2/xr blor Bar in = 1.21e4 ar = 1.89e4			40 x10 ⁵	40 x10 ⁵ -30		
	IC14LC18 ML1LC2-MAR IC15LC18-JAM					p/s Co Mi Ma				- 20 - 10 p/sec/cm ² /st Color Bar Min = 9.49e4 Max = 610e5			- 1.0 p/sec/cm^2/sr Color 8 ar Min = 5.85e4 Max = 2.57e5
	PANx-005				Par		ige 1 = -3.12e4 x = 1.04e0	Brai	n	Image Min = -3.43e2 Max = 1.09e5	Bo	ne	Image Min = -2.49e2 Max = 6.00e4
	HID28 PAC120							1		- 80000 			40000
	MELx-006 MELx-008 MELx-009					0.4 0.2 sc/cm ² 2/st or Bat 5.19e5			- 40000 	X	3-	- 30000 - 20000 p/tec/cm*2/sr Color Bar Min = 1.6044 Min = 5.664	

CONCLUSIONS AND PERSPECTIVES

Table 3 Comparison of metastatic occurrence delay and frequency in HBCx-14-Luc1 mice with unresected or day 40-resected primary tumors

PDX Mod
HBCx-14-Lu

Figure 3 Graphical representation of tumor and metastasis growth in mice with resected and unresected primary tumors

XenTech **Booth # 208**

MATERIALS AND METHODS

		unresected	First metastasis	N of mice with	mean	Luciferase-positive lung metastasis at endpoint			
del	N of mice	resected at day 40	observed (days)	at 1 week after first apparison	latence (days)	In vivo	ex-vivo		
uc1	26	8	48	7/8	49 +/-2	7/8	7/8		
UCT.	20	18	53	3/18	66 +/-15	11/13	11/13		